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Hopf bifurcation cascade in small-a laser diodes subject to optical feedback

M. Sciamanna,* P. Mégret, and M. Blondel
Service d’Electromagne´tisme et de Te´lécommunications, Faculte´ Polytechnique de Mons, Boulevard Dolez 31, B-7000 Mons, Belgiu

~Received 2 October 2003; published 30 April 2004!

We analyze theoretically the dynamics of a semiconductor laser subject to optical feedback, on the basis of
the well-known Lang-Kobayashi equations. Previous investigations on this laser system suggest that a small
linewidth enhancement factor (a factor! stabilizes the laser dynamics. By contrast, we unveil here optical
feedback induced instabilities which are present for a small value ofa but which disappear whena increases
abovea;1. By combining numerical simulations and modern continuation methods for delay-differential
equations, we unveil cascades of subcritical and supercritical Hopf bifurcations on the first external-cavity
mode~ECM!. We unveil for the first time, to our knowledge, the occurrence of subcritical Hopf bifurcation
points for intermediate values of the EC length, i.e. close to the boundary between the short and the long EC
regimes. They lead to severe laser instabilities such as large intensity and possibly chaotic pulsations. More-
over, these Hopf bifurcation cascades for small values ofa are shown to be responsible for different bifurca-
tion scenarios leading to restabilization of the first ECM and to ECM bistability.

DOI: 10.1103/PhysRevE.69.046209 PACS number~s!: 05.45.2a, 42.65.Sf
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I. INTRODUCTION

Optical feedback in semiconductor lasers, i.e., the refl
tion of the emitted light into the laser cavity, has attracted
attention of many scientists since more than 20 years, ow
to its practical importance as well as its rich and comp
nonlinear dynamics~for a review, see, e.g., Petermann@1#
and van Tartwijk and Lenstra@2#!. An in-depth understanding
of the instabilities in laser diodes subject to feedback is
dispensable in order to avoid them, or to control and stabi
the laser emission. On the other hand these instabilities
be useful for new applications of laser diodes such as
recently suggested interferometric applications@3#, cryptog-
raphy based on optical chaos@4,5#, and also the all-optica
generation of high-frequency electrical signals@6–10#.

The theoretical modeling of the dynamics of laser diod
with optical feedback is very often based on the Lan
Kobayashi~LK ! equations@11#. The LK equations model a
single-mode laser diode subject to a weak to moderate o
cal feedback from a flat, distant mirror. New problems co
cerned with optical feedback effects in multi-longitudin
mode edge-emitting lasers@12,13# and in vertical-cavity
surface-emitting lasers@8,9,14–20# have motivated exten
sions of the LK equations to more complex rate equatio
However, the dynamics of the simple LK equations is s
only partially understood and new regimes of instabilities
regularly reported@21,22#, which motivate new theoretica
investigations in different sets of laser and feedback par
eters.

Experiments and numerical simulations have shown
the chaotic instabilities arising in laser diodes subject to
layed feedback emerge from a cascade of bifurcations on
steady states of the laser system, i.e., the so-called exte
cavity modes~ECMs! @23#. The ECMs destabilize from a
Hopf bifurcation and the emerging time-periodic soluti
may in turn destabilize to period-doubling regimes or qua
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periodicity and possibly lead to chaotic intensity oscillation
The Hopf bifurcation on ECMs therefore plays an importa
role since it is often the first bifurcation in the route to mo
complex optical feedback-induced laser instabilities. Most
the instabilities in the LK equations originate fromsuper-
critical Hopf bifurcationson ECMs. As we increase a bifur
cation parameter, the ECM steady state undergoes a H
bifurcation from which emerges astabletime-periodic solu-
tion. The time-periodic solution grows in amplitude as w
increase the bifurcation parameter and may destabilize
more complex laser outputs. Supercritical Hopf bifurcatio
have been reported, for example, in the cascade of bifu
tions leading to chaotic low-frequency fluctuations@23,24#,
in the route to regular pulse package dynamics@22,25#, and
recently they were shown to be responsible for the hi
frequency harmonic intensity oscillations resulting from
beating between two ECMs@6–10,26#.

Very recently, we have shown thatsubcritical Hopf bifur-
cations are also possible in the LK equations@27#, in the
so-called short EC regime, i.e., when the EC frequency
much larger than the relaxation oscillation~RO! frequency of
the solitary laser diode@6,7#. By contrast to the case of su
percritical Hopf bifurcations, the ECM that undergoes a su
critical Hopf bifurcation destabilizes to anunstable time-
periodic solution. Very often this time-periodic solutio
stabilizes as we increase the bifurcation parameter, and
laser then exhibits sharp, high-frequency and large inten
pulses@27#. These subcritical Hopf bifurcations are found
a large range of laser and feedback parameters~while re-
maining in the short EC regime! but they usually disappea
and become supercritical as the linewidth enhancement
tor a decreases belowa.1 ~except for particular paramete
values! @27,28#.

The a factor is one of the fundamental parameters
semiconductor lasers. It is responsible for the enhancem
of the laser linewidth, and it affects the frequency chirp, t
modulation response, and the effect of optical feedback@29#.
In the search for large bandwidth and high-frequency te
communication systems, there is an increasing need
©2004 The American Physical Society09-1
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small-a laser diodes, which can greatly benefit from the
cent developments of quantum dot~QD! active materials
@30#. These new interests also motivate further investigati
on the dynamical effects of optical feedback in small-a laser
diodes. All previous studies on the impact of a smalla on the
feedback-induced instabilities have reported on stabiliza
effects. For example, asa decreases, we have the followin

~i! The amount of feedback leading to the onset of
chaotic coherence collapse increases@31,32#, i.e., the laser
exhibits higher resistance to feedback-induced chaotic in
bilities.

~ii ! The stability of the maximum gain ECM is signifi
cantly improved with respect to the occurrence of chao
low-frequency fluctuations@33–36#.

~iii ! The quasiperiodic oscillations which typically accom
pany the two ECM beatings in short ECs disappear@10#.

~iv! The subcritical Hopf bifurcations responsible f
large intensity oscillations in short EC convert to mu
smoother supercritical Hopf bifurcations@27#.

In this paper, we show however that a smalla factor may
also induce instabilities on the ECM steady states, which
not present for conventional, larger values ofa. A combina-
tion of numerical integration of the LK equations with mo
ern continuation methods for delay-differential equatio
@37# allows us to report on cascades of subcritical and su
critical Hopf bifurcations on the first ECM. First, we sho
that the decrease of thea factor is responsible for the ap
pearance of subcritical Hopf bifurcations which, by contr
to previous reports@27#, appear for values of the EC lengt
such that the EC frequency is comparable or smaller than
RO frequency of the solitary laser, i.e., in the long EC
gime. These subcritical Hopf bifurcations lead to large inte
sity, possible chaotic pulsations. Second, we show that th
Hopf bifurcation cascades may induce restabilization mec
nisms of the first ECM and lead to ECM bistability. Finall
our bifurcation study complemented by time traces and sp
tral analysis allows us to yield some insight into the differe
physical origins of the reported Hopf-induced instabilities
the first ECM. The dynamical scenarios which we analy
here clearly show that, by contrast to what can be conclu
from previous reports~see, e.g., Refs.@31,33–36#!, a smalla
factor may also play a destabilizing role in the dynamics o
laser diode with optical feedback. Our results are theref
thought to give new insight into the Hopf instabilities
delayed laser diodes and also to motivate new experime
studies. Both the subcritical Hopf bifurcations and restab
zation mechanisms have typical dynamical signatures wh
should be easily recognized in experiments.

The plan of our paper is as follows. In Sec. II we remi
the reader the Lang-Kobayashi equations and the Hopf b
cation problem. Our analysis of Hopf bifurcations in delay
lasers with a smalla factor is performed in Sec. III. Sectio
IV illustrates the laser instabilities emerging from the Ho
bifurcations shown in Sec. III, on the basis of bifurcati
diagrams of the laser intensity. Our conclusions are sum
rized in Sec. V.

II. HOPF BIFURCATION PROBLEM

Our theoretical analysis is based on the well-known
equations@11#. In a dimensionless form the LK equation
can be written as@38#
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ds
5~11 ia!ZY1hexp~2 iV0u!Y~s2u!, ~1!

T
dZ

ds
5 P̄2Z2~112Z!uYu2, ~2!

whereY is the slowly varying amplitude of the electric fiel
and Z is the carrier number in excess with respect to
threshold value.a is the linewidth enhancement factor. Th
parameterT is defined as the ratio between the carrier lif
time ts and the photon lifetimetp , i.e., T[ts /tp . P̄ is a
normalized pump term.u[text /tp is the external-cavity
round-trip timetext normalized bytp . V0[v thtp , where
v th is the frequency of the solitary laser at threshold.h
[ f tp , wheref is the feedback rate.

The Hopf bifurcations on the ECMs can be determin
from a standard linear small perturbation analysis on
ECM steady states. We obtain two transcendental equat
for hH , i.e., the critical feedback rate leading to a Ho
bifurcation and the Hopf frequencyvH . These equations
have been derived in several publications~see, e.g., Ref.
@38#! and can be written as

052«@ P̄1hHcos~D!#hHF1Q12vHhHF1

3@hHF22vHcos~D!#2«
112P̄

122hcos~D!

3@hH
2 ~F1

22F2
2!12vHhHcos~D!F22vH

2 #, ~3!

052«@ P̄1hHcos~D!#~hHF2Q2vH!2vH

3@hH
2 ~F1

22F2
2!12vHhHcos~D!F22vH

2 #,

2«
112P̄

122hHcos~D!
2hHF1@hHF22vHcos~D!#, ~4!

where we define

«[1/T, ~5!

Q[cos~D!2sin~D!a, ~6!

F1[cos~vHu!21, ~7!

F2[2sin~vHu!. ~8!

Because of the time delay in the LK equations, it is hard
possible to solve Eqs.~3! and ~4! analytically. Several ana
lytical estimates of the Hopf bifurcations on ECMs ha
been suggested but they are valid only in a limited range
laser or feedback parameters@6,7,39#. Our procedure to ana
lyze the Hopf bifurcations is therefore the following. W
solve numerically the Hopf equations~3! and~4! and analyze
the solutionshH andvH as a function of the EC delay tim
u. Indeed we are interested in analyzing whether the
tained Hopf bifurcations are limited to the short or to t
long EC regimes, which depend onu. Once the Hopf bifur-
cation points have been located, we classify these points
9-2
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either supercritical or subcritical Hopf points, depending
the stability of the time-periodic solution emerging fro
these Hopf points: super~sub!critical Hopf bifurcations lead
to stable~unstable! time-periodic solutions. The stability o
the time-periodic solutions emerging from the Hopf bifurc
tion points has been computed with the use of a rece
developed continuation package for delay-differential eq
tions, DDE-BIFTOOL @37#. This continuation package is inte
esting in that it allows us to analyze the stability of stea
states and time-periodic solutions, and to follow branche
steady states and time-periodic solutions irrespective of t
stability. In this sense, the use of continuation methods
more powerful than a direct integration of the rate equati
since the direct integration only allows us to track the sta
attractors.

III. SUBCRITICAL AND SUPERCRITICAL HOPF
BIFURCATIONS FOR SMALL a

In Figs. 1~a! and 1~b!, we have plotted the solutionshH
andvH of Eqs.~3! and~4! as a function of the EC delay tim
u and in the case of a smalla factor (a50.5). Such a smal
but nonzeroa parameter has been measured, for example
QD Fabry-Perot laser diodes@30# and has been recently sug
gested in the context of optical feedback experiments on
distributed feedback laser diodes@32#. The other parameter
are fixed toP̄51.155, T51710, andV0u5p, which are
typical values often used in agreement with optical feedb
experiments~see e.g., Ref.@22#!. We have checked that ou
conclusions are valid in a large range of values of laser
feedback parameters providing that thea factor is small. The
Hopf frequencyvH is normalized by the RO frequenc

vRO[A2P̄/T. For the parameters we have considered
Fig. 1, the period of the laser relaxation oscillations,TRO
[2p/vRO , corresponds toTRO.170. According to the
definition of the short and long EC regimes@6,7#, the short

FIG. 1. ~a,b! Analysis of the Hopf bifurcation curve in the
planes (u, hH) and (u, vH /vRO), respectively. By thick line~dot-
ted line! is shown the part of the Hopf curve corresponding
supercritical ~subcritical! Hopf bifurcation points. The dashed
dotted line corresponds to a branch of unstable Hopf bifurca
points. The inset in~a! shows an enlargement of the Hopf curve,
order to better analyze the new subcritical and supercritical H
bifurcation points.
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~long! EC regime corresponds to values of the EC leng
such thatu,(.)170.

Hopf bifurcations progressively appear on the EC
steady states as we increase the feedback rateh and as new
ECM steady states are created. However, we concen
here on the first Hopf bifurcations that appear on the fi
ECM steady state. We distinguish different types of Ho
bifurcations. We call stable Hopf bifurcation points the Ho
bifurcations that modify the stability of the ECM stead
state, either stabilizing or destabilizing the ECM. The
stable Hopf bifurcation points can be either supercritical
subcritical depending on the stability of the emerging tim
periodic solution. By solid line~dotted line! is shown the part
of the Hopf curve corresponding to supercritical~subcritical!
Hopf bifurcation points. By contrast, we call unstable Ho
bifurcations the Hopf bifurcations that do not modify th
ECM stability. These Hopf bifurcation points may appear
antimodes, i.e., saddle-type~always unstable! ECMs, but
they may also appear on an ECM that has been previo
destabilized. The unstable Hopf bifurcation points are plot
with a dashed-dotted line. They are shown for clarity sin
as plotted in Fig. 1, a branch of supercritical or subcritic
Hopf bifurcation points may convert into a branch of u
stable Hopf points.

As shown in Fig. 1~a!, a first set of subcritical Hopf bi-
furcation points~dotted line! appears for very small value o
u (5&u&40). They appear close to turning points in th
S-shaped Hopf curve. These subcritical Hopf bifurcati
points, which are typical of the short EC regime and whi
may also appear for larger values ofa, have been exten
sively studied in Ref.@27#. Interestingly, our analysis of the
Hopf bifurcation in small-a laser diodes unveils new Hop
bifurcation cascades and instabilities whenu;TRO , i.e.,
close to the boundary with the long EC regime. First, anot
set of subcritical Hopf bifurcation points appears for 1
&u&165. As shown in the following, these subcritical Ho
bifurcations have dramatic consequences on the laser ou
and lead to large intensity pulsations and possibly cha
oscillations. Second, new turning points in the Hopf bifurc
tion curve appear for these large values ofu. As we shall
analyze in more details in the following, these turning poin
in the Hopf curve are indicative of restabilization mech
nisms of the first ECM: as we increase the feedback rateh,
a first Hopf bifurcation destabilizes the first ECM but it ma
restabilize for larger values ofh from a second Hopf bifur-
cation. This second, restabilizing Hopf bifurcation, may
subcritical, as it is the case foru.162, or supercritical, as i
is the case for 190&u&230. A third important result in our
Hopf bifurcation analysis is the situation which appears
165&u&190: the feedback rate needed to destabilize
first ECM with a Hopf bifurcation is much larger than fo
smaller or larger values ofu. The first ECM therefore exhib-
its an increased stability in a rather large region ofu and
destabilizes from a supercritical Hopf bifurcation for larg
values of h. This supercritical Hopf point belongs to
branch of Hopf bifurcation points that were unstable Ho
points ~dashed-dotted line! for smaller values ofu.

The frequency of the Hopf bifurcation is plotted as a fun
tion of u in Fig. 1~b!. For most of the values ofu, the first
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Hopf bifurcation on the first ECM exhibits a frequency clo
to the RO frequency. However, for 165&u&190, the first
ECM destabilizes with a supercritical Hopf bifurcatio
which, interestingly, exhibits a frequency much larger th
the RO frequency. In the previous reports on the dynamic
delayed laser diodes with short EC@6–10,25#, the first Hopf
bifurcation always occurs with a frequency corresponding
the RO frequency and only the Hopf bifurcations that oc
for larger feedback rateh exhibit a larger frequency, close t
the EC frequency. Our analysis shows that, while for mos
the values ofu the first Hopf bifurcation exhibits indeed th
RO frequency, there might be a~small! range ofu where
there is no Hopf bifurcation at the RO frequency but on
Hopf bifurcations with much higher frequencies.

Our Hopf bifurcation analysis has unveiled instabilities
the first ECM in the case of a smalla factor: ~1! a large
region of subcritical Hopf bifurcations close to the bounda
with the long EC regime and~2! the possibility of three
consecutive Hopf bifurcations on the same, first ECM.
order to confirm that these instabilities are strongly related
the small value of thea factor we have analyzed the Hop
bifurcation curve as in Fig. 1~a! but for larger values ofa;
see Fig. 2. Thea factor is varied froma51 ~a! to a54 ~d!,
all the other parameters remaining equal to those of Fig. 1
we compare Figs. 2~a!–2~d! with Fig. 1~a!, we can conclude
that the increase ofa has dramatic consequences on t
Hopf bifurcations. First, the sequence of two consecut
subcritical Hopf bifurcation points, which was observ
close tou5162 in Fig. 1, is not present anymore whena
increases. Still we find subcritical Hopf bifurcation poin
but in a range ofu that progressively decreases as we
creasea, which indicates that these subcritical Hopf bifu
cations emerge as a consequence of a small value ofa. Sec-
ond, the sequence of three consecutive supercritical H
bifurcations, which was shown in Fig. 1~a! for 190&u
&230, disappears whena increases abovea51. As we
increase thea factor the laser dynamics is mostly charact
ized by a situation in which the first ECM destabilizes with

FIG. 2. Analysis of the Hopf bifurcation curve in the plane (u,
hH) for different values ofa: ~a! a51, ~b! a52, ~c! a53, and
~d! a54. The other parameters are the same as in Fig. 1.
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single supercritical Hopf bifurcation point and then rema
unstable whatever the further increase of the feedback r
The Hopf bifurcation cascade in which the first ECM res
bilizes as a result of a subcritical or a supercritical Ho
point is therefore strongly related to a smalla factor.

IV. LASER INSTABILITIES EMERGING FROM THE HOPF
BIFURCATIONS

We have shown in Sec. III that a smalla factor may be
responsible for new bifurcation mechanisms on the fi
ECM. In this section, we shall analyze in more details t
laser instabilities that emerge from these Hopf bifurcatio
We shall plot the intensityI[uYu2 of the first ECM steady
states and their Hopf bifurcations~symbolL) as they appear
when we increase the feedback rateh, i.e., a bifurcation
diagram for the steady state ECMs. These bifurcation d
grams have been computed with the recently developed
tinuation method for delay-differential equations,DDE-

BIFTOOL @37#, since we are interested in a global picture
the instabilities on the first ECMs, including both stable a
unstable attractors. By solid~dashed! line is shown the stable
~unstable! part of each branch. Hopf bifurcation points a
shown withL, and the boldL indicate the Hopf bifurca-
tion points that modify the stability of the first ECM. Hop
points with boldL belong in fact to the solid or dotted line
in Fig. 1~a!. Each bifurcation diagram of the steady sta
ECMs will be complemented by another figure, in which w
plot the branches of time-periodic solutions emerging fro
the Hopf bifurcation points. The stability of these tim
periodic solutions has been computed from an analysis of
Floquet multipliers, numerically obtained with the packa
DDE-BIFTOOL. The stable~unstable! parts of the branches o
time-periodic solutions are shown in solid~dashed! lines.
The time-periodic solutions may destabilize either from
torus bifurcation~symbol *!, from a limit point~symbolh),
or from a period doubling bifurcation~symboln). Different
Secs. IV A–IV D correspond to increasing values of the d
lay time u, for which the laser dynamics is qualitativel
different.

The instabilities emerging from Hopf bifurcations in th
case of a very short EC have been largely discussed in
other recent publication@27#. We are interested here in th
new set of subcritical and supercritical Hopf bifurcatio
points, unveiled in Fig. 1, which appear whena is small and
for values ofu close to the boundary with the long EC re
gime (u.TRO5170).

A. Subcritical Hopf bifurcation, bistability and large intensity
oscillations

As shown in Fig. 1~a!, when 105&u&165 the first ECM
destabilizes from a subcritical Hopf bifurcation point. Fi
ures 3~a! and 3~b! illustrate the ECM stability whenu
5160. As we increase the feedback rateh from zero, the
first ECM destabilizes from a subcritical Hopf bifurcatio
point and remains unstable if we further increaseh. From
the subcritical Hopf bifurcation point emerges an unsta
branch of time-periodic solution. The branch of tim
9-4
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periodic solution grows in amplitude as we decreaseh and
coexists with the steady state branch of the first ECM
bistability between a time-periodic solution and the stea
state ECM is therefore observed, as a result of a subcri
Hopf bifurcation. The branch of time-periodic solution stab
lizes for small values ofh through a limit point (h) and the
stable branch of time-periodic solutions destabilizes
larger values ofh through a torus bifurcation~* !. The sub-
critical Hopf bifurcation has therefore a dramatic cons
quence on the laser output. If we increase the feedback
h from zero, we observe first a steady output power a
then, suddenly, a very large intensity oscillation with a ma
mum of the order of six to seven times the output power
the laser without optical feedback. Moreover, the torus bif
cation indicates that the laser output may exhibit quasip
odic and possibly chaotic oscillations for slightly larger va
ues ofh.

We have analyzed in more details the laser dynam
emerging from the subcritical Hopf bifurcation point. In Fi
4 we plot the time trace ofI together with the system trajec
tory in the plane„f(s)2f(s2u)1V0u, Z…, for several in-
creasing values of the feedback rateh. f(s) is the phase of
the field Y(s)[uYuexp@if(s)2iV0u#. The function f(s)
2f(s2u)1V0u is interesting in that its steady state sol
tion corresponds to the ECM frequency. The continuat
packageDDE-BIFTOOL only allows us to compute the stead
state and time-periodic solutions. We have therefore com
mented the continuation study with a direct numerical in
gration of the LK equations, in order to track also the perio
doubling, quasiperiodic and possibly chaotic solutions.
h50.004 00,~a1!, ~a2!, the laser exhibits a steady state s
lution corresponding to the first ECM. As we increase t
feedback rateh, the first ECM undergoes a subcritical Ho
bifurcation and, as shown in Fig. 3~b!, the laser then jumps
to a large limit cycle attractor, which corresponds to t
emission of sharp, large intensity pulses with a freque

FIG. 3. ~a! Bifurcation diagram of the intensityI for the first
branches of ECMs as a function of the feedback rateh for u
5160. The other parameters are the same as in Fig. 1. The H
bifurcation points are shown withL, and the points indicated with
bold L represent the Hopf points corresponding to a change
stability of the first ECM. In~b! are shown some branches of tim
periodic solutions emerging from the Hopf bifurcations. T
branches of time-periodic solutions are shown in solid~dashed!
lines when they are stable~unstable!. They destabilize either from a
torus bifurcation~* !, a limit point (h), or a period doubling bifur-
cation (n).
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close to the RO frequency. This situation is plotted in~b1!,
~b2! for h50.005 00. As shown in Fig. 3~b!, the time-
periodic solution emerging from the subcritical Hopf bifu
cation destabilizes for larger values ofh with a torus bifur-
cation. Figures 4~c1! and 4~c2! show that forh50.006 02 a
small modulation appears on the intensity pulses and
phase space trajectory exhibits a ‘‘noisy’’ attractory that
sults from the combination of the fast pulsating behav
with a slower envelope modulation. For still largerh, the
modulation depth has increased and the laser system exh
a typical quasiperiodic oscillation with a slow modulation
fast intensity pulses; see~d1!, ~d2! for h50.006 40. As we
increaseh the window of quasiperiodic oscillations is inte
spersed with windows of time-periodic oscillations,
shown in~e1!, ~e2! for h50.007 20. The laser system exhib
its a time-periodic pulsating behavior with a period mu
larger than the fundamental period in~b1!, ~b2!. The limit
cycle attractor in the phase space projection~e2! closes on
itself after a large number of turns. Forh50.007 90,~f1!,
~f2!, the time-periodic solution may bifurcate to a chaoticli
dynamics, in which the intensity exhibits irregular bursts
fast intensity pulses~f1!. The system trajectory is very com
plex in the phase plane~f2! and encircles the first ECM
steady state. For largerh, the windows of chaoticlike inten-
sity oscillations are interspersed with windows of tim
periodic oscillations, as shown in~g1!, ~g2! for h
50.00830. Similar to the cases~e1!, ~e2!, the laser exhibits a
time-periodic behavior with irregular bursts of fast intens
pulses. The period is however larger than in~e1!, ~e2! and
the system trajectory now encircles the first ECM and ma

pf
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FIG. 4. Large intensity oscillations emerging from a subcritic
Hopf bifurcation in delayed laser diode with small-a factor. We plot
the time traces of the intensityI and the system trajectory in th
phase plane„f(s)2f(s2u)1V0u, Z… for increasing values ofh:
~a1,a2! h50.004 00, ~b1,b2! h50.005 00, ~c1,c2! h50.00 602,
~d1,d2! h50.006 40, ~e1,e2! h50.007 20, ~f1,f2! h50.007 90,
~g1,g2! h50.008 30, and~h1,h2! h50.010 00. The values of the
other parameters are the same as in Fig. 3. The circles indicat
ECM steady states.
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several loops before closing on itself. As we increaseh fur-
ther the laser system again locks to a steady-state solutio
shown in ~h1!, ~h2! for h50.010 00, but corresponding t
the second ECM. As shown in~h2!, a new pair of ECMs
~mode-antimode! has been created and the system locks
the mode with the maximum gain~the smallerZ).

The Hopf bifurcation points appearing for larger values
h on the first branch of ECM in Fig. 3 are unstable since
first ECM is already unstable. The branches of time-perio
solutions emerging from these Hopf points are therefore a
unstable but they may eventually stabilize as we increase
bifurcation parameter, as shown in Fig. 3~b! close to h
50.035: a branch of time-periodic solution connects an
stable Hopf point on the first ECM to a supercritical Ho
point on the upper branch of the next ECM, i.e., on the mo
branch of the next ECM. The laser dynamics emerging fr
such an ECM bridge is very different from the one emerg
from the subcritical Hopf bifurcation on the first ECM, a
will be discussed in more details in Sec. IV D.

B. Re-stabilization of the first ECM with a subcritical Hopf
bifurcation

If u is close tou.162, the first ECM may exhibit a
sequence of two consecutive subcritical Hopf bifurcat
points, as shown in Fig. 1~a!. The first ECM destabilizes
from a first, subcritical Hopf bifurcation but it may restab
lize for larger values ofh from a second subcritical Hop
bifurcation point.

This situation is illustrated foru5162 in Figs. 5~a! and
5~b!. Let us first analyze the bifurcation cascade on the fi
ECM. As we increaseh from zero, the first ECM destabi
lizes from a subcritical Hopf bifurcation as in the caseu
5160 but by contrast to this previous case, the first EC
now restabilizes from a second subcritical Hopf bifurcati
for a larger feedback rateh. A third supercritical Hopf bifur-
cation point appears for larger values ofh and definitely
destabilizes the first ECM steady state. This sequence
three Hopf bifurcations illustrated in Fig. 5~a! emerges from
the turning point of the Hopf bifurcation curve when an
lyzed in the plane (h,u); see Fig. 1~a!. The branch of time-
periodic solution emerging from the first subcritical Ho
bifurcation point is very similar to that of the caseu5160. It
connects the first subcritical Hopf bifurcation point on t
first ECM branch to an unstable Hopf bifurcation located
the antimode branch of the second ECM. The branch

FIG. 5. Same as in Fig. 3 but foru5162.
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time-periodic solution emerging from the second subcriti
Hopf bifurcation point on the first ECM connects to an an
mode at much larger values ofh @out of the range ofh in
Fig. 5~b!# and it never stabilizes. Finally, the branch of tim
periodic solution emerging from the third supercritical Ho
bifurcation on the first ECM destabilizes as we increaseh
through a torus bifurcation and restabilizes for larger valu
of h through an inverse period-doubling bifurcation~symbol
n). It then connects a supercritical Hopf bifurcation on t
mode branch of a next ECM.

If we compare Fig. 5 with Fig. 3, we see that the differe
cascade of Hopf bifurcations has modified the topology
the bifurcation diagram and has important consequence
the laser dynamics. First, the first ECM can now be resta
lized with an inverse~subcritical! Hopf bifurcation. This re-
stabilization mechanism therefore leads to a bistability
tween this now restabilized first ECM and a second EC
which has appeared stable for smaller values ofh, see Fig. 5
for 0.022&u&0.035. Depending on the initial conditions o
under presence of noise, the system can therefore ex
either one steady state or the other one, i.e., either the E
with the maximum gain~higher intensity! or the now resta-
bilized first ECM with a smaller intensity. Second, th
branch of time-periodic solution shown for larger value ofh
~which connects the first ECM to a next ECM! now exhibits
two stable parts close to the two supercritical Hopf bifurc
tions it connects. As shown in Fig. 2, the small value of t
a factor is responsible for this cascade of Hopf bifurcatio
in a laser diode with optical feedback.

C. High-frequency supercritical Hopf bifurcation on the first
ECM

For u>165, the first Hopf bifurcation which destabilize
the first ECM is now supercritical, as shown in Fig. 1~a!.
Different situations are however possible depending on
values ofu. We first illustrate the bifurcation on the firs
ECMs whenu5175; see Figs. 6~a! and 6~b!.

The first ECM is now stable in a large range of feedba
ratesh but destabilizes from a supercritical Hopf point whe
h.0.03. Interestingly, as shown in Fig. 1~b!, the frequency
of this Hopf bifurcation is much larger than the RO and
very close to 1/u. The Hopf bifurcation with a frequency
close to the RO frequency, which was the first Hopf bifurc
tion to destabilize the first ECM in the previous cases

FIG. 6. Same as in Fig. 3 but foru5175.
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Secs. IV A and IV B, has now disappeared and has been
placed by a Hopf bifurcation at larger value ofh and with a
higher frequency. It therefore gives a large range of stab
to the first ECM. As shown in Fig. 6~b!, the branch of time-
periodic solution emerging from the supercritical Hopf bifu
cation destabilizes through a torus bifurcation but becom
stable for larger feedback rates through an inverse per
doubling bifurcation. It then connects a supercritical Ho
bifurcation on the mode branch of the next ECM. The bran
of time-periodic solution shown in Fig. 6~b! is therefore very
similar to the branch in Fig. 5~b! which appears close toh
50.035, but the first branch of time-periodic solution a
pearing for small values ofh in Fig. 5~b! is not present in
Fig. 6~b!, as a result of the increased stability for the fi
ECM.

D. Restabilization of the first ECM with a supercritical Hopf
bifurcation

When 190&u&230, the first ECM exhibits a sequence
three supercritical Hopf bifurcation points as we increase
feedback rateh, as shown in Fig. 1~a!. This situation is
illustrated foru5195 in Figs. 7~a! and 7~b!.

As we increaseh from zero, the first ECM destabilize
from a supercritical Hopf bifurcation, then restabilizes fro
a second supercritical Hopf bifurcation, and for larger valu
of h the first ECM destabilizes from a third supercritic
Hopf bifurcation. The branches of time-periodic solutio
plotted in Fig. 7~b! show that, interestingly, a complete
stable branch of time-periodic solution connects the fi
ECM to itself for small values ofh. As we increase the
feedback rate from zero, the laser intensity exhibits firs
steady state solution, then a small modulation of inten
appears for increasingh, and the modulation depth increas
progressively as we increaseh until it reaches a maximum
and then decreases again for largerh. The laser intensity
then reaches its previous steady state once again. The
quency of the laser intensity modulation is close to the
frequency, in agreement with the Hopf frequency we co
puted in Fig. 1~b!. A typical time trace corresponding to th
time-periodic dynamics is shown in Fig. 8~a!. Another
branch of time-periodic dynamics is shown in Fig. 7~b! for
largerh. This branch emerges from the third Hopf bifurc
tion and since the Hopf is supercritical, the branch is sta
as soon it is created. However it destabilizes through
period-doubling bifurcation for larger values ofh. The un-

FIG. 7. Same as in Fig. 3 but foru5195.
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stable limit cycle oscillation restabilizes for larger values
h through an inverse period-doubling bifurcation. The inte
sity dynamics along this branch of time-periodic solutions
illustrated in Fig. 8~b! for h50.025. By contrast to the time
periodic oscillations that appear for a smaller value ofh and
shown in Fig. 8~a!, the frequency of the intensity oscillation
is not related to the RO frequency and is about twice the
frequency.

The physical origin of the harmonic intensity oscillation
shown in Figs. 8~a! and 8~b! is very different, as illustrated
by the corresponding optical spectra in Figs. 8~c! and 8~d!.
The optical spectrum shown in~c! corresponds to the dynam
ics plotted in ~a! and which appears from the complete
stable branch of time-periodic dynamics that connects
first ECM to itself. A dominant peak appears at the frequen
of the first ECM and side peaks are separated from the do
nant peak by a frequency span corresponding approxima
to the RO frequency. Harmonics of the side peaks are a
present in the optical spectrum. The time-periodic dynam
shown in ~a! therefore emerges from the destabilization
the first ECM through a Hopf bifurcation, which results in a
undamping of the relaxation oscillations. Its physical orig
does not involve the other ECMs that appear for larger fe
back rateh. By contrast, the optical spectrum in~d!, which
corresponds to the time-periodic dynamics shown in~b!, ex-
hibits only two peaks which are located at the frequencies
two ECMs. This suggests that the time-periodic dynam
shown in ~b! physically corresponds to a beating betwe

FIG. 8. Time trace of the laser intensity and corresponding
tical spectrum for the parameters of Fig. 7 and with~a,c! h
50.005 and~b,d! h50.025. In~a,c! is shown a time-periodic in-
tensity dynamics with a frequency close to the RO frequency
emerges from the destabilization of the first ECM for small value
h and is observed for a value ofh along the completely stable
branch of time-periodic dynamics that connects the first ECM
itself. In ~b,d! is shown a time-periodic intensity dynamics with
frequency larger the RO frequency. It emerges from the desta
zation of the first ECM for a larger value ofh than in ~a! and is
observed for a value ofh along a bridge of time-periodic solution
that connect the first stable ECM to a second mode~stable ECM!.
9-7
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two ECMs. The two beating ECMs correspond to the tw
frequency peaks in the optical spectrum. The frequency
ference between these two ECMs being much larger than
RO frequency, this explains the faster intensity oscillations
Fig. 8~b! with respect to that in Fig. 8~a!. The time-periodic
dynamics shown in Fig. 8~b! belongs to what is called a
Hopf bifurcation bridge: as shown in Fig. 7~b!, a bridge of
time-periodic solutions indeed connects two ECMs@24#. The
typical case of Hopf bifurcation bridge connects a mo
~stable ECM! to an antimode~saddle-type ECM! @6,7,24,26#.
It is worth noting that in our case the two beating ECMs a
not a mode and an antimode but two stable ECMs~modes!.
We have recently performed an important analysis of
bridges between ECMs in the short EC regime and fou
that bridges between two modes are indeed favored b
small a factor @10#. Interestingly, our bifurcation analysis i
this paper shows that bridges between modes may also
pear whenu is close to the RO periodTRO , i.e., in the long
EC regime.

The time traces shown in Fig. 4~b1! and Figs. 8~a! and
8~b! are three examples of time-periodic dynamics in
laser system with small value ofa, which are of physically
and mathematically different origins. The dynamics shown
Fig. 4~b1! emerges from a subcritical Hopf bifurcation on th
first ECM, while the dynamics shown in Figs. 8~a! and 8~b!
emerge a supercritical Hopf bifurcation on the first EC
While they both emerge from a supercritical Hopf bifurc
tion, the dynamics~a! in Fig. 8 is also very different from
that shown in~b!, since as we have demonstrated one
namics emerges from a Hopf destabilization of a sin
ECM, while the second dynamics emerges from a bea
between two ECMs that are destabilized by a Hopf bifur

FIG. 9. Trajectory of the laser system in the plane (I , Z), for the
limit cycle oscillation shown in Fig. 4~b1!, Fig. 8~a!, and Fig. 8~b!,
respectively.
ic
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tion. The differences between these three dynamics are
very clear when we analyze the phase trajectory, for
ample, in the plane (I ,Z); see Fig. 9. The first case corre
sponds to the dynamics~b1! in Fig. 4: the dynamics exhibits
a large excursion of intensities during each pulse and
trajectory is therefore strongly asymetric in the plane (I , Z).
This phase space trajectory is typical of the emission of la
intensity pulses. In case~b!, which corresponds to the dy
namics~a! in Fig. 8, the trajectory is now very close to
symmetric one, hence confirming that the intensity dynam
exhibits harmonic oscillations with well-distributed intensi
excursions in the duration of an oscillation. Finally, case~c!,
which corresponds to the mode beating~b! shown in Fig. 8,
exhibits the most symmetric limit cycle trajectory wit
strongly harmonic intensity oscillations.

V. CONCLUSION

In summary, we have shown that a smalla factor may be
responsible for various Hopf bifurcation instabilities in las
diodes subject to optical feedback and modeled by the
equations. For values of the EC delay timeu close to the
period of the laser relaxation oscillations~i.e., at the bound-
ary between the short and the long EC regimes!, the laser
may exhibit subcritical Hopf bifurcations which are asso
ated with strongly pulsating, large intensity, laser outpu
Moreover, the first ECM, which destabilizes from a Ho
bifurcation as we increase the feedback rateh, may restabi-
lize with either a subcritical or a supercritical inverse Ho
bifurcation for larger values ofh, hence leading to ECM
bistability. These restabilization mechanisms and the s
critical Hopf bifurcations on the first ECM progressively di
appear when thea factor increases abovea;1. Our results
therefore show, to our knowledge, for the first time that t
decrease of thea factor may also play a destabilizing role i
the dynamics of a laser diode subject to optical feedba
Our results are thought to yield new insights into the the
retical aspects of the Hopf bifurcation on ECMs and mo
vate new experimental studies of small-a laser diodes sub-
ject to optical feedback.
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